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Abstract

Dimensional psychopathology and its neurobiological underpinnings could provide important insights into major
psychiatric disorders, including major depressive disorder, bipolar disorder and schizophrenia. In a dimensional
transdiagnostic approach, we examined depressive symptoms and their relationships with regional homogeneity and
leptin across major psychiatric disorders. A total of 728 participants (including 403 patients with major psychiatric
disorders and 325 age—-gender-matched healthy controls) underwent resting-state functional magnetic resonance
imaging at a single site. We obtained plasma leptin levels and depressive symptom measures (Hamilton Depression
Rating Scale (HAMD)) within 24 h of scanning and compared the regional homogeneity (ReHo), plasma leptin levels
and HAMD total score and factor scores between patients and healthy controls. To reveal the potential relationships,
we performed correlational and mediational analyses. Patients with major psychiatric disorders had significant lower
ReHo in primary sensory and visual association cortices and higher ReHo in the frontal cortex and angular gyrus;
plasma leptin levels were also elevated. Furthermore, ReHo alterations, leptin and HAMD factor scores had significant
correlations. We also found that leptin mediated the transdiagnostic relationships among ReHo alterations in primary
somatosensory and visual association cortices, core depressive symptoms and body mass index. The transdiagnostic
associations we demonstrated support the common neuroanatomical substrates and neurobiological mechanisms.
Moreover, leptin could be an important association among ReHo, core depressive symptoms and body mass index,
suggesting a potential therapeutic target for dimensional depressive symptoms across major psychiatric disorders.

Introduction

For over a century, the three major psychiatric disorders
(MPDs), namely, major depressive disorder (MDD),
bipolar disorder (BPD) and schizophrenia (SCZ), have
primarily been considered as distinct disorders with
separate mechanisms of disease. Researchers have studied
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MPDs as separate diagnostic entities. However, genetic
susceptibility, metabolic disturbances, neural alterations
and symptomatology across MPDs overlap, suggesting a
transdiagnostic continuum of major endogenous psy-
choses' . The Research Domain Criteria has worked
towards a dimensional transdiagnostic approach by inte-
grating research from genomics, molecules, neural cir-
cuitry, psychological and clinical manifestations®”. Most
transdiagnostic studies have focussed on the differences;
however, their neurobiological substrate remains poorly
understood. Recent studies have documented that the
dimensionality of clinical presentations may share com-
mon neurobiological associations>**®, Herein this
dimensional transdiagnostic approach to explore the
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multilevel link might provide new insights into common
neurobiological mechanisms and would therefore be
useful for precision medicine across MPDs.

Depressive symptoms are common in all three MPDs.
For instance, individuals at a high risk for SCZ with
depressive symptoms are at an increased risk for pro-
gression to psychosis’. In a meta-analysis of 56 studies,
depressive symptoms were associated with a high BPD
risk. Approximately 40% of BPD cases were initially
diagnosed as MDD, and 22% of MDD cases were are later
diagnosed as BPD at up to 12-18 years of follow-up'®.
Collectively, depressive symptoms typically precede the
onset of a more severe psychopathology in SCZ and BPD.
On a dimensional scale, depressive symptoms may pre-
sent disruptions within a specific neural circuitry across
MPDs. However, its underlying neurobiological mechan-
ism remains unclear.

One powerful tool to explore neural circuitry alterations
is intrinsic resting-state functional connectivity, such as
regional functional connectivity''. Regional homogeneity
(ReHo) is a highly sensitive, reproducible and reliable
index of regional functional connectivity'>. ReHo is
believed to reflect anatomical, morphological, and
intrinsically geometric similarity in a local brain structure
as well as a topology-functionality interplay. Accumulat-
ing evidence suggests that ReHo changes are associated
with the pathophysiology of MPDs'' ', ReHo alterations
in the prefrontal cortex, thalamus, right supplemental
motor area and primary visual, auditory and motor cor-
tices have been detected across SCZ, BPD and MDD.
Moreover, a positive correlation has been found between
ReHo in the left superior temporal gyrus and depressive
symptoms in BPD'. A recent large, resting-state func-
tional magnetic resonance imaging (fMRI) data set (709
patients with MDD and 725 healthy controls, including
our data set) found that lower ReHo in the postcentral
gyrus was associated with depressive symptoms in
MDD'®. Collectively, ReHo may be a transdiagnostic
neurobiological substrate for evaluating the reproducible
alterations underlying depressive symptoms.

In studying the dimensional underpinning of MPDs, we
need to understand the molecular influences on neural
circuitry. For decades, abnormal leptin levels have been
detected in SCZ, BPD and MDD'™2!. Leptin is an
adipocyte-secreted hormone, primarily known for its role
in energy regulation in appetite and body weight™. It
enters the brain through a saturable, passive transport at
the blood—brain barrier®>; the human brain is a source of
leptin in the plasma®*. Leptin is associated with depressive
symptoms and behaviours through various brain sys-
tems®”. Animal studies demonstrated that the knockout of
leptin receptors induced depression-related behaviours®.
Leptin can affect the release, synthesis and metabolism of
emotional mediators, including norepinephrine, 5-
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hydroxytryptamine and dopamine®’; thus, it may be a
possible transdiagnostic link across MPDs.

In this study, we developed a transdiagnostic approach
to explore the neurobiological basis of dimensional psy-
chopathology across MPDs. Using correlational and
mediational analyses, we examined the relationship
among molecular brain-depressive symptoms in MPDs.
We hypothesised that plasma leptin levels and ReHo
significantly correlate with depressive symptoms and
leptin further mediates the association between ReHo and
depressive symptoms.

Materials and methods
Participants

This study enrolled 728 individuals aged 13-55 years
(127 with SCZ, 123 with BPD, 153 with MDD and 325
controls). We recruited the participants from the out-
patient and inpatient units at the Department of Psy-
chiatry of the First Affiliated Hospital of China Medical
University and Shenyang Mental Health Centre in
Shenyang, China. For those aged =18 years, 2 trained
clinical psychiatrists independently confirmed their
diagnoses by using the Structured Clinical Interview for
Diagnostic and Statistical Manual of Mental Disorders,
Fourth Edition (DSM-IV) Axis I Disorders (SCID). For
patients aged <18 years, they used the Schedule for
Affective Disorders and Schizophrenia for School-Age
Children-Present and Lifetime Version. All the partici-
pants met the DSM-1IV diagnostic criteria for SCZ, BPD
or MDD without any other axis I disorder. We recruited
the controls from the local area via advertisements and
confirmed that they had no current or lifetime axis I
disorder by using the SCID Non-Patient Version as well
as no history of axis I disorders in their first-degree
relatives. Exclusion criteria for all participants were as
follows: (1) disordered eating and substance or alcohol
abuse/dependence, (2) concomitant major medical dis-
orders, (3) significant pathological changes identified on
high-resolution T1- and T2-weighted MRI, (4) head
trauma with loss of consciousness for >5 min and neu-
rological disorders, and (5) MRI contraindications.

This study was approved by the Institutional Review
Board of the China Medical University and was conducted
in accordance with the Declaration of Helsinki. All par-
ticipants provided written informed consent. All experi-
ments and methods were carried out in accordance with
approved regulations and guidelines.

Clinical and cognitive assessment

We measured the weight and height of the subjects
according to the written, standardised instructions provided
in a manual. The following anthropometric measure was
calculated according to standardised approaches: body mass
index [BMI; calculated as weight divided by the square of
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height (kg/m?)]. Moreover, all participants completed the
Hamilton Depression Rating Scale (HAMD), the Young
Mania Rating Scale (YMRS) and Brief Psychiatric Rating
Scale (BPRS).

MRI acquisition

MRI scans were obtained using a 3.0-T GE Sigma sys-
tem (Sigma EXCITE HDx; GE Healthcare, Milwaukee,
MI, USA) with a standard eight-channel head coil at the
First Affiliated Hospital of the China Medical University,
Shenyang, China. Head motion was minimised with
restraining foam pads provided by the manufacturer. All
participants were instructed to be relaxed and keep their
eyes closed without moving and falling asleep during the
scan. The resting-state functional sequence was as fol-
lows: repetition time = 2000 ms, echo time =30 ms, flip
angle = 90°, field of view = 240 x 240 mm?, matrix = 64 x
64, 35 slices, slice thickness/gap = 3 mm/0 mm. The scan
lasted for 6 min and 40s.

Data processing

The images were processed and analysed using the
Statistical Parametric Mapping 8 (SPMS; http://www.fil.
ion.ucl.ac.uk/spm) and Data Processing Assistant for R-
functional MRI-fMRI (DPARSEF; http://www.restfmri.net/
forum/DPARSF) toolkits*’. The first ten time points of
functional images were discarded to ensure magnetisa-
tion stabilisation. Next, the remaining images were cor-
rected for slice timing. The six-parameter rigid body
transformation (three rotations and three translations)
were used for image realignment and head motion cor-
rection. All subjects with a head motion >3.0° rotation
and 3.0 mm translation were excluded. We normalised
motion-corrected functional images to standard EPI
template in Montreal Neurological Institute space and
then resampled them to 3 x 3 x 3 mm?>. At this stage, we
removed the linear detrending to reduce the influence of
increased MRI equipment temperature and demon-
strated temporal band-pass filtering (0.01-0.08 Hz) to
minimise high-frequency noise and the effect of low
frequency. Then the nuisance signals including 24 head
motion parameters, global mean, white matter and cer-
ebrospinal fluid were regressed out from the data'®**>",
In addition, we utilised the mean framewise displacement
(FD) to address the residual effects of motion on
between-group differences. No significant differences for
the mean FD were observed between patients with MPDs
and controls (t = —0.867, P = 0.386). Then mean FD was
set as a covariate in the statistical analyses to minimise
head motion confounds®**?,

Calculation of ReHo
To characterise the ReHo, we used an ReHo approach,
which applies Kendall’s coefficient of concordance (KCC) to
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measure the degree of ReHo in resting-state fMRI. We
developed ReHo maps for individual participants by cal-
culating the KCC of the time series for a given voxel with
regard to 26 neighbouring voxels®*. The preprocessed indi-
vidual 4D images are not spatially smoothed, considering
that ReHo is an intrinsic smoothing computation across the
neighbours in space. However, to improve the performance
of group-level statistical comparisons, we smoothed all
individual ReHo maps by using a 6-mm full-width half-
maximum Gaussian filter.

Measurement of plasma leptin levels

Five milliliters of venous blood samples were collected
from 194 participants, centrifuged at 2000 rpm for 10 min
and then stored at —80°C. Plasma leptin levels were
measured by the Human Premixed Multi-Analyte Kit
(R&D Systems, Inc., Minneapolis, MN, USA) with the
Human Magnetic Luminex Assay (Leptin [BR51]). The
assay was performed in duplicate according to the man-
ufacturer’s directions, and intra- and inter-assay coeffi-
cients of variation were <10% for leptin. Samples were
randomised and the two operators were blinded to all
clinical information. The assays were calibrated using
standards; raw intensity measurements were converted to
absolute concentrations by comparison with the stan-
dards. Those that fell below the minimum level of
detection were assigned a value of minimum level of
detection. Detailed information of this method can be
found in Supplementary Materials.

Statistical analysis
Statistical analyses of demographic and clinical characteristics
SCZ, BPD and MDD constituted the MPD group, and
we conducted a series of analyses to compare MPDs and
controls. The normality of continuous variables was tes-
ted using one-sample Kolmogorov—Smirnov (K-S) test.
Group differences between continuous variables were
tested using ¢ test (normally distributed data) or
Mann—-Whitney U test (non-normally distributed data).
Chi-square tests were used to determine differences
between categorical variables. Plasma leptin levels were
natural log-transformed to obtain normal distributions.
Demographic and clinical data was analysed using the
IBM SPSS Statistics for Windows, version 22.0 (IBM
Corp., Armonk, NY, USA). The statistical significance was
set as P<0.05. To confirm the reliability of our data,
effects of three potential confounders (i.e., duration, the
first episode and medication) were examined (see Sup-
plementary Data for full details).

HAMD factor analyses

To identify a parsimonious list of factors for the HAMD,
we employed the exploratory factor analysis (EFA) and
confirmatory factor analysis (CFA). We randomly divided
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all patients into two subsamples, namely, initial sample
and replication sample, for EFA and CFA, respectively.
We then employed Kaiser—Meyer—Olkin (KMO) measure
of sampling adequacy and Bartlett’s test of sphericity to
assess the appropriateness of factor analysis on the data.
To estimate the internal consistency reliability, we cal-
culated Cronbach’s alpha, which is the most widely used
method, for all main factors and for each dimension. We
selected the varimax rotation method to simplify the
interoperability of the factor solution in the dimensional
process. Furthermore, we used the identified EFA factors
in subsequent analyses, as detailed subsequently. CFA for
the HAMD can be found in Supplementary Materials.

Voxel-wise analyses of ReHo values

We used the DPABI to perform voxel-based two-sample
t tests to compare ReHo values between the MPDs and
controls, with the diagnostic group as an independent
factor and age, gender and mean FD as covariates. A
voxel-wised threshold was set at P <0.001 with false dis-
covery rate (FDR) correction in DPABI 4.1.

Correlation analyses

We conducted partial correlation analyses (two-tailed)
to examine relationships with ReHo values in regions with
significant between-group differences, plasma leptin
levels, HAMD total scores, HAMD factor scores and BMI
in the MPD groups. Age, gender, mean FD and medica-
tion were considered as covariates. In addition, to assess
the effects of BMI on ReHo values, which were extracted
from the regions showing significant differences, and
plasma leptin levels in the controls, we performed partial
correlation analyses (two-tailed) controlling for age, gen-
der and mean FD. The significance level was set as
P <0.05, with FDR for multiple comparison correction.

Confounding effects

To assess reliability, we examined the influence of
potential confounding variables (i.e., illness duration, the
first episode and medication status). The details can be
found in Supplementary Materials (see Supplementary
Methods).

Mediation analyses

Once we identified significant ReHo-leptin-depressive
symptom measures associated, we conducted mediation
analyses to test whether leptin mediates the association
between ReHo and depressive symptoms. On the basis of
a standard three-variable path model, we performed
mediation analyses by using the PROCESS for SPSS
22.0 statistical software with a 5000 bias-corrected boot-
strap sample for significance testing. As mentioned, we
treated age, gender, mean FD and medication as covari-
ates. Statistical significance was achieved when 95%
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confidence intervals (CIs) did not include zero for the
estimates of indirect effect® >,

Results
Demographic and clinical characteristics

We found no significant differences in age, gender,
handedness, weight, BMI and smoking between the MPDs
and controls (P> 0.05). K-S test showed that plasma leptin
levels in each group were normally distributed (P > 0.05),
whereas age, BMI, illness duration, HAMD, YMRS and
BPRS in each group failed to pass the normality test
(P<0.05). Table 1 presents detailed demographic and

Table 1 Participant demographic and clinical
characteristics.

Characteristic Group; mean + SD Statistics P value

or no. (%)
Control MPDs
(n =325) (n =403)
Demographic characteristics
Age, years 29.24 (9.94) 2847 (8.88) 1.091  0.27
Gender 132/193 143/260 2015 0156
(male/female)
Right 303 (93%) 360 (89%) 0796 0672
handedness
Weight® 6241 (14.39)  62.90 (12.93) —0479 0632
BMI (l<g/m2)a 2376 (26.60)  22.58 (3.90) 0857  0.392
Smoking 37/188 (20%) 49/206 (24%) 0971 0324
Clinical characteristics
First episode, yes - 262 (65%) - -
Medication, yes - 259 (64%) - -
Antidepressant - 125 (31%)
Mood stabiliser - 70 (17%) - -
Antipsychotic - 124 (31%) - -
Duration, months - 32.98 (49.21) - -
HAMDP 127 (2.16) 13.79 (10.57) —20.262  <0.001
YMRS® 0.25 (0.93) 297 (6:40) —7255 <0001
BPRSY 1842 (1.94) 2890 (10.08) —15779  <0.001
Leptin (pg/ml)® 5463.13 9510.14 —4011  <0.001
(4055.93) (9539.14)
Leptin (log)® 3.57 (044) 3.78 (046) —3.104 0.002

BMI body mass index, BPRS Brief Psychiatric Rating Scale, HAMD Hamilton
Depression Scale, YMRS Young Mania Rating Scale.

2Control, n = 314; patients with major psychiatric disorders, n = 385.

PControl, n = 303; patients with major psychiatric disorders, n = 374.

“Control, n = 298; patients with major psychiatric disorders, n = 337.

dControl, n = 237; patients with major psychiatric disorders, n = 303.

€Control, n = 83; patients with major psychiatric disorders, n=111.
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Fig. 1 Significant differences in regional homogeneity between
patients with MPDs and healthy controls. The significance was set
at Prpg < 0.05 with voxel P<0.001. Red in the colour bar indicates
relatively higher ReHo values; blue colour denotes relatively lower
ReHo values in patients with MPDs. FDR false discovery rate, MPD
major psychiatric disorders, ReHo regional homogeneity.

clinical data of the MPDs and controls, whereas Table S1
lists detailed characteristics of the SCZ, BPD and MDD
groups.

HAMD factor analyses

We analysed the HAMD factor to determine the best
number of factors that described the scale. Bartlett’s test
of sphericity was statistically significant (P < 0.001), and
the KMO value was 0.946. The Cronbach’s alpha was
0.927, demonstrating a strong internal consistency. The
data can be deemed to be suitable for EFA. Using the
maximum variance method, we identified HAMD-17
items with 4 dimensions, accounting for 64.425% of the
total variance in the initial sample. We also determined
four-factor rotation to provide the optimal description of
the HAMD scales. Then we labelled these 4 factors as
psychological depressive symptoms (Factor 1), somatic
depressive symptoms (Factor 2), insomnia (Factor 3) and
mixed symptoms (Factor 4). EFA results can be found in
Table S2. CFA results for the HAMD can be found in
Supplementary Materials.

ReHo values and plasma leptin levels across the diagnostic
groups

The MPD group exhibited lower ReHo in the bilateral
primary somatosensory cortices, left primary auditory
cortex, right primary visual cortex and bilateral visual
association cortices. Primarily, ReHo was significantly
higher in the bilateral orbitofrontal cortices, bilateral
dorsolateral prefrontal cortices and bilateral angular gyri
(Fig. 1 and Table 2). Specific ReHo values of the SCZ, BPD
and MDD groups are listed in Supplementary Materials
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and Fig. S1. Compared with those in the controls, the
leptin levels in patients with MPDs were significantly
elevated (Table 1). Specific leptin levels of the SCZ, BPD
and MDD groups can be found in Supplementary Mate-
rials, Fig. S2 and Table S1.

Correlations between ReHo values, plasma leptin levels
and clinical variables

In the controls, ReHo values, plasma leptin levels and
BMI did not significantly correlate (Table S3). ReHo
correlated with plasma leptin levels, HAMD total score,
HAMD factor scores and BMI after the FDR correction
for multiple comparisons, as shown in partial correlation
matrices (Fig. 2) and Tables S4-S7.

The correlated ReHo-leptin—-HAMD score triplets were
as follows: (ReHo in right primary somatosensory
cortex—leptin: ¥ = —0.245, P=0.011; leptin—psychological
depressive symptoms: r= —0.261, P=0.007 and ReHo
in right primary somatosensory cortex—psychological
depressive symptoms: r = 0.129, P = 0.010); (ReHo in right
visual association cortex—leptin: r= —0.270, P =0.005;
leptin—psychological depressive symptoms: r=—0.261,
P=0.007 and ReHo in right visual association
cortex—psychological depressive symptoms: r=0.115,
P=0.022); and (ReHo in right primary somatosensory
cortex—leptin: r=—0.245, P=0.011; leptin—somatic
depressive symptoms: r=—0.317, P =0.001 and ReHo in
right primary somatosensory cortex—somatic depressive
symptoms: r = 0.114, P = 0.023; Fig. 2; Tables S4-S6).

The correlated ReHo-leptin—BMI triplets were as fol-
lows: (ReHo in right primary somatosensory cortex—leptin:
r=—0.245, P=0.011; leptin—-BMI: r=0.710, P<0.001
and ReHo in right primary somatosensory cortex—BMI:
r=—0.145, P<0.005); (ReHo in right visual association
cortex—leptin: r=—0.270, P =0.005; leptin-BMI: r=
0.710, P<0.001 and ReHo in right visual association
cortex—BMI: r=—0.193, P<0.001); (ReHo in left visual
association cortex—leptin: r=—0.306, P=0.001;
leptin—-BMI: r=0.710, P<0.001 and ReHo in left visual
association cortex—BMI: » = —0.181, P < 0.001); (ReHo in
left dorsolateral prefrontal cortex—leptin: r=0.233,
P=0.016; leptin—-BMI: r=10.710, P<0.001; ReHo in left
dorsolateral prefrontal cortex-BMI: r=0.136, P = 0.008;
Fig. 2; Tables S4-S7).

Confounding effects

After adjusting for potential confounding factors (i.e.
illness duration, the first episode and medication status),
these results remained consistent with our main findings
(see Supplementary Materials and Table S8).

Mediation analyses
In mediation analyses, ReHo in right visual association
and right primary somatosensory cortices had a
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Table 2 Regional homogeneity values in brain regions showing significant group differences.

Brain regions BA Cluster size Peak MNI coordinates F-value

X Y z

Patients’ group < control
Right primary somatosensory cortex 1/2/3 211 51 =21 57 —4.6993
Left primary somatosensory cortex 1/2/3 746 —48 =27 54 —6.5973
Left primary auditory cortex 41 398 -39 —18 9 —6.2337
Right primary visual cortex 17/18/19 1300 15 —66 -3 —7.5493
Right visual association cortex 19/37 103 48 —69 0 —5.1931
Left visual association cortex 19/37 95 —48 —72 —6 —5.0662

Patients’ group > control
Right orbital frontal cortex 11/47 150 42 39 -9 5.6068
Left orbital frontal cortex 11/47 182 —45 39 —15 4.9879
Right dorsolateral prefrontal cortex 9 83 33 45 30 4.087
Left dorsolateral prefrontal cortex 9 277 =21 48 21 52131
Right angular gyrus 39 12 42 —66 33 4.9476
Left angular gyrus 39 114 —51 —66 33 46568

Significant at P < 0.05 corrected and a corrected P <0.001 at the voxel level using false discovery rate corrections for multiple comparisons.

BA Brodmann areas, MNI Montreal Neurological Institute.

significant negative effect on plasma leptin level (path A:
95% CI, —38,242.653 to —2912.998; 95% CI, —31,975.787
to —3903.892 respectively), whereas plasma leptin level
had no significant effect on psychological and somatic
depressive symptoms (path B: 95% CI, —0.0002 to 0.000;
95% CI, —0.0001 to 0.000). Total effect of the ReHo in
right visual association cortex on psychological depressive
symptoms was significant (path C: 95% CI, 2.081 to
18.043). Likewise, the total effect of the ReHo in right
primary somatosensory cortex on somatic depressive
symptoms was also significant (path C: 95% CI, 0.063 to
9.528). After adding the plasma leptin level as a mediator,
the direct effect was no longer significant (path C: 95%
CIL, —0.869 to 16.617; 95% CI, —0.821 to 8.681), whereas
the indirect path with plasma leptin level as a mediator
was significant (path AB: 95% CI, 0.419 to 5.590; 95% ClI,
0.340 to 2.309, respectively; Fig. 3a, Tables $9-510).
ReHo values in the right primary somatosensory, right
visual association and left visual association cortices had a
significant negative relationship with leptin (path A: 95%
Cl, —31,975.787 to —3903.892; 95% CI, —38,242.653 to
—2912.998; 95% CI, —45,302.334 to —9777.606, respec-
tively). Furthermore, leptin had a significant positive effect
on BMI (path B, 95% CI, 0.0002 to 0.0003). The total
effect of the ReHo in the right primary somatosensory,
right visual association and left visual association cortices
on BMI was significant (path C: 95% CI, —14.761 to
—2.048; 95% CI, —18.299 to —4.879 and 95% CI, —21.544
to —6.692, respectively). After adding leptin as a mediator,
the direct effect from the ReHo in the right primary
somatosensory cortex on BMI was no longer significant
(path C: 95% CI, —10.092 to 0.092), but the direct effect
from right and left visual association cortices on BMI was
significant (95% CI, —11.687 to —1.882; 95% CI, —14.264

to —2.371, respectively), whereas the indirect path via
leptin was significant (path AB: 95% CI, —8.546 to —1.305;
95% CI, —9.197 to —0.835 and 95% CI, —11.567 to
—2.595, respectively). No other significant mediation
effects were identified (Fig. 3b and Tables S10-S11).

Discussion

In this study, we employed a novel approach to
assess the neurobiological underpinning of depressive
symptoms across MPDs in a large sample from a
single site. We are not aware of other such studies.
Here we observed the following: (1) lower ReHo in the
primary sensory cortex (including primary somato-
sensory, auditory and visual cortices) and visual
association cortex and higher ReHo in the prefrontal
cortex (involving orbitofrontal and dorsolateral pre-
frontal cortices) and angular gyrus and the plasma
leptin levels elevated in patients with MPDs. (2) ReHo
values (right primary somatosensory cortex, bilateral
visual association cortices and left dorsolateral pre-
frontal cortex), plasma leptin levels, HAMD scores
(psychological and somatic depressive symptoms) and
BMI in MPDs were significantly associated. The psy-
chological and somatic depressive symptoms dis-
played similar results, and we further combined them
together as core depressive symptoms. (3) Leptin
mediated both the association between ReHo altera-
tions (primary somatosensory and visual association
cortices) and core depressive symptoms as well as
BMI. These findings are consistent with an expanding
literature implicating primary somatosensory cor-
tex>3%3%, visual association cortex*®*! and leptinzs’42
in depression and further suggesting that depressive
symptoms are dimensional features across MPDs.
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Utilising a transdiagnostic approach, the extent of
overlap and distinct alterations in ReHo values among
SCZ, BPD and MDD were examined. Notably, common
alterations represented 86% of the total regional values
that showed significant differences in the four-group
analysis, suggesting the presence of common neuroana-
tomical substrates in SCZ, BPD and MDD. As distinct
differences may have been less prominent among the
three diagnostic categories, this unclear boundary further
supports the need for research using transdiagnostic

designs. Moreover, these differences were graded, with
greatest alterations in SCZ, followed by BPD, and then
MDD, which mirror the clinical severity and prognosis of
three disorders. Our current findings are in line with
previous GWAS* and neuroimaging studies'”**™*,
Taken together, this study provides critical insights into
the biological basis of SCZ, BPD and MDD from a
transdiagnostic perspective.

We found a lower ReHo within primary sensory and
visual association cortices, while higher ReHo within the
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Fig. 3 Mediation models. a Path A represents the association
between ReHo values in the primary somatosensory and visual
association cortices and leptin. Path B represents the association
between leptin and core depressive symptoms. Path C represents the
association between ReHo values and core depressive symptoms.
Path C represents the total effect of ReHo values on core depressive
symptoms; and Path C' shows the association between ReHo values
and core depressive symptoms not through leptin; whereas path AB
represents the indirect effect of ReHo values on core depressive
symptoms mediated by leptin. b Path A represents the association
between ReHo values in the primary somatosensory and visual
association cortices and leptin. Path B represents the association
between leptin and BMI. Path C represents the association between
ReHo values and BMI. Path C represents the total effect of ReHo values
on BMI; and Path C" shows the association between ReHo values and
BMI not through leptin; whereas path AB represents the indirect effect
of ReHo values on BMI mediated by leptin. BMI body mass index,
ReHo regional homogeneity.

prefrontal cortex and angular gyrus in MPDs compared
with the controls. The findings are consistent with our
previous reports as well as the reports of others'”'®,
suggesting an imbalance between network segregation
and integration across MPDs'’. Consistent with a pre-
vious study'®, we observed ReHo alterations in primary
sensory, visual association and orbital frontal cortices
associated with depressive symptoms. The above-
mentioned brain regions are involved in emotion pro-
cessing®®***, Primary somatosensory and visual
association cortices play important roles in encoding
somatosensory sensations and emotional recognition
and regulation®”. Previous authors had demonstrated
the interaction of emotion and somatic symptoms in
the somatosensory cortex™®. Core depressive symptoms,
including depressed mood, anhedonia and somatic
symptoms, could arise from these abnormalities in emo-
tion processing”’. These results conform to a previous
research®'®3°, suggesting that ReHo alterations in the
primary somatosensory and visual association cortices are
common neuroanatomical substrates across MPDs.
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Furthermore, we also found an important relationship
among lower ReHo in the primary somatosensory and
visual association cortex, elevated leptin levels and
depressive symptoms in patients with MPDs. Findings in
mediation models implicate a causal role for elevated
leptin levels in the pathophysiology of depression. Lower
regional FC in these brain regions may implicate possible
reduction in neuronal excitability, especially to decrease
the activity of GABAergic neurons®. Interestingly,
reduction of GABAergic neurons could process the sig-
nals arriving from the periphery such as leptin®. Leptin
has been consistently associated with emotional proces-
sing in the brain®**>°", Its receptors are widely distributed
in emotional processing regions, such as primary soma-
tosensory and visual association cortices®”. Leptin also
influences neural function in the emotional control of
food intake and partly in weight by reducing the GABA
release?”. Thus elevated circulating leptin levels that we
observed in patients with MPDs may have functional
consequences for neuronal excitability. Collectively, our
data suggest that functional abnormalities of the primary
somatosensory and visual association cortices may be
associated with elevated leptin levels at the periphery that
contribute to depressive symptoms.

An intriguing aspect of our findings is the mediating
effect of leptin on the association between ReHo altera-
tions in primary somatosensory and visual association
cortices and core depressive symptoms. The GABAergic
deficits may be the biological mechanism underlying the
leptin-mediated effect in depression®. Indeed, leptin may
directly act on presynaptic GABAergic neurons to induce
its mediated effect®®. The plasticity of GABAergic neurons
is critical in the development of the primary sensory and
visual association cortices®”*!. GABAergic reduction in
the primary somatosensory and visual association cortices
in depression have been documented®>*"***°, Primary
somatosensory and visual association cortices in depres-
sive symptoms are essential, and leptin is an important
link between ReHo alterations and core depressive
symptoms, which may possibly relate to GABAergic
neurons. Overall, our main findings demonstrated com-
mon neurobiological mechanisms for the leptin-mediated
core depressive symptoms, suggesting a potential ther-
apeutic target for depressive symptoms across MPDs.

In patients with MPDs, BMI was associated with ReHo
alterations, leptin, and depressive symptoms, contrary to
that in healthy controls. Interestingly, leptin also mediated
the association between ReHo alterations in primary
somatosensory cortex, visual association cortex and BMI.
Moreover, BMI was associated with core depressive
symptoms, such as depressed mood, weight changes,
appetite and genital symptoms®*~®’. The underlying
mechanism of this association may be related with the
changes in the hypothalamic—pituitary—adrenal axis,
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glucocorticoid receptors and GABAergic system®®°'. The
current findings could expand our understanding of BMI
as an objective measure to assess the severity of depressive
symptoms62’63.

This study has some limitations. First, the cross-
sectional design limits our interpretation of causal rela-
tionships. Thus we could not determine how the dynamic
relationship among ReHo values, leptin and depressive
symptoms changes. Future longitudinal research is nee-
ded to define the causal relationship and neurobiological
mechanisms of depressive symptoms. Second, our study is
limited by possible confounding effects from illness
duration, medication, lifestyle and dietary habits. Future
studies will aim to explore potential variations in illness
duration. Third, this range could be reflective of the
transdiagnostic continuum for depressive symptomatol-
ogy. Finally, an updated version of the volume-based
ReHo has been developed on the cortical surface and
demonstrated a more biologically plausible validity***°.
In our future work, we will validate and investigate the
reproducibility of the present findings across methods,
study designs and centres.

Conclusion

Transdiagnostic associations existed between ReHo,
leptin, depressive symptoms and BMI, and leptin is an
important mediator among ReHo alterations in primary
somatosensory and visual association cortices, core
depressive symptoms and BMI. Our findings illustrate
common neuroanatomical substrates and neurobiological
mechanisms for the leptin-mediated core depressive
symptoms and ultimately provide a potential therapeutic
target for dimensional depressive symptoms across MPDs.
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